Interior error estimate for periodic homogenization

نویسنده

  • G. Griso
چکیده

In a previous article about the homogenization of the classical problem of diffusion in a bounded domain with sufficiently smooth boundary we proved that the error is of order ε. Now, for an open set Ω with sufficiently smooth boundary (C) and homogeneous Dirichlet or Neuman limits conditions we show that in any open set strongly included in Ω the error is of order ε. If the open set Ω⊂R is of polygonal (n=2) or polyhedral (n=3) boundary we also give the global and interrior error estimates. Résumé. Nous avons démontré dans un précédent article sur l’homogénéisation du problème type de la diffusion dans un domaine borné de frontière régulière que l’erreur est d’ordre ε. On montre maintenant pour un ouvert Ω de frontière régulière (C) avec les conditions aux limites homogènes de Dirichlet ou de Neumann que dans tout ouvert fortement inclus dans Ω l’erreur est de l’ordre de ε. Si l’ouvert Ω⊂R est de frontière polygonale (n=2) ou polyédrale (n=3) on donne également les estimations globale et intérieure de l’erreur.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Error estimates for periodic homogenization with non-smooth coefficients

In this paper we present new results regarding the H1 0 -norm error estimate for the classical problem in homogenization using suitable boundary layer correctors. Compared with all the existing results on the subject, which assume either smooth enough coefficients or smooth data, we use the periodic unfolding method and propose a new asymptotic series to approximate the solution uε with an erro...

متن کامل

Error estimate and unfolding for periodic homogenization

This paper deals with the error estimate in problems of periodic homogenization. The methods used are those of the periodic unfolding. We give the upper bound of the distance between the unfolded gradient of a function belonging to H(Ω) and the space ∇xH(Ω)⊕∇yL(Ω;H per(Y )). These distances are obtained thanks to a technical result presented in Theorem 2.3 : the periodic defect of a harmonic fu...

متن کامل

Error estimates on homogenization of free boundary velocities in periodic media

In this paper we consider a free boundary problem which describes contact angle dynamics on inhomogeneous surface. We obtain an estimate on convergence rate of the free boundaries to the homogenization limit in periodic media. The method presented here also applies to more general class of free boundary problems with oscillating boundary velocities.

متن کامل

On the Rate of Convergence in Periodic Homogenization of Scalar First-Order Ordinary Differential Equations

In this paper, we study the rate of convergence in periodic homogenization of scalar ordinary differential equations. We provide a quantitative error estimate between the solutions of a first-order ordinary differential equation with rapidly oscillating coefficients, and the solution of the limiting homogenized equation. As an application of our result, we obtain an error estimate for the solut...

متن کامل

Periodic approximations of the ergodic constants in the stochastic homogenization of nonlinear second-order (degenerate) equations

We prove that the effective nonlinearities (ergodic constants) obtained in the stochastic homogenization of Hamilton-Jacobi, “viscous” Hamilton-Jacobi and nonlinear uniformly elliptic pde are approximated by the analogous quantities of appropriate “periodizations” of the equations. We also obtain an error estimate, when there is a rate of convergence for the stochastic homogenization.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011